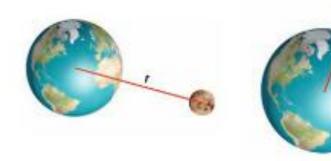
Nom :	Groupe :

Date : _____

PHYSIQUE 5e secondaire La mécanique (La dynamique (Les forces et le mouvement))

Les différents types de forces


Une FORCE est une grandeur VECTORIELLE dont l'action sur un objet fait subir à ce dernier une DÉFORMATION ou une MODIFICATION DE SON MOUVEMENT.

La force gravitationnelle (Fg) est l'attraction mutuelle de deux corps due à leur masse.

Une force s'exprime en newton (N).

La loi de la gravitation universelle :

$$F_g = \frac{Gm_1m_2}{r^2}$$
 où $G = \text{Constante gravitationnelle} = 6,67 \times 10^{-11} \frac{\text{N} \times \text{m}^2}{\text{kg}^2}$
$$m_1 = \text{Masse d'un corps, exprimée en kilogrammes (kg)}$$

$$m_2 = \text{Masse de l'autre corps, exprimée en kilogrammes (kg)}$$

$$r = \text{Distance entre les deux corps, exprimée en mètres (m)}$$

a) La distance Terre-Lune.

 b) Un être humain situé à la surface de la Terre.

Exemple A : Quelle est la force gravitationnelle s'exerçant entre une boule de quilles immobile de 7,00 kg et une quille de 1,6 kg si elles sont distantes de 18 m ?

Exemple B : Quelle est la force gravitationnelle existant entre une boule de quilles de 7,00 kg et la Terre ? La masse de la Terre est de 5,98 x 10^{24} kg et son rayon moyen est de 6,37 x 10^6 m.

L'accélération gravitationnelle (g) est l'accélération constante subie par un objet en chute libre près de la surface de la Terre ou celle d'un autre astre. Sur la Terre, $g = 9,80 \text{ m/s}^2$.

Pour calculer l'accélération gravitationnelle d'un astre, on utilise la formule : g = GM/R² où M = Masse de la planète (kg), R = Rayon de la planète en mètres (m).

Exemple : Calculer l'accélération gravitationnelle de la planète Terre. On a M = 5.98×10^{24} kg, R = 6.37×10^6 m

Pour calculer la force gravitationnelle exercée par la Terre sur un objet :

 F_g = mg où F_g = Force gravitationnelle en newtons (N), m = Masse de l'objet soumis à l'accélération gravitationnelle en kilogrammes (kg), g = Accélération gravitationnelle en m/s².

Exemple C : Calculer la force gravitationnelle exercée par la Terre sur un être humain de 75 kg.

La masse et le poids

La **masse** (m) d'un corps est la mesure de la quantité de matière. L'unité est le kilogramme (kg). La masse d'un corps ne varie pas.

Le **poids** est la mesure de la force gravitationnelle (F_g) qui est exercée sur un corps par un astre. L'unité du poids et le newton (N). L'instrument qui mesure le poids est le **dynamomètre**.

Exemple D : Sachant que 1 mL d'eau a une masse de 1 g, quelles sont les valeurs de la masse et du poids d'une bouteille d'eau de 675 mL sur Terre et sur la Lune ? (On considère la masse du contenant comme négligeable). La masse et le rayon de la Terre sont respectivement de $5,98 \times 10^{24} \text{ kg}$ et $6,37 \times 10^6 \text{ m}$, tandis que la masse et le rayon de la Lune sont de $7,35 \times 10^{22} \text{ kg}$ et $1,74 \times 10^6 \text{ m}$.

La force normale (F_N) est la réaction de résistance de la surface d'un corps à une force exercée par un autre corps en contact. La force normale est toujours perpendiculaire à la surface de contact.

Exemple E : Quelle est la force normale exercée par une table qui supporte une caisse de 13,0 kg ?

La force de frottement (F_f) est une force qui s'oppose au mouvement. Le frottement dépend de la nature des surfaces de contact (matériaux), de leur rugosité (sèches, lubrifiées).

Le coefficient de frottement. Lorsqu'il y a un frottement entre deux corps solides, deux situations peuvent se produire : Les deux corps peuvent ne pas glisser, c'est le frottement **statique**. Un corps peut glisser contre un autre, c'est le frottement **cinétique**.

La force de frottement entre deux substances est proportionnelle à un coefficient de frottement (μ). Le coefficient n'a pas d'unité.

Le coefficient de frottement **statique** (μ_s) permet d'évaluer la valeur maximale que la force de frottement peut atteindre avant que deux corps ne se mettent à glisser l'un contre l'autre.

Le coefficient de frottement cinétique (μ_c) permet de calculer la valeur de la force de frottement quand deux corps glissent l'un contre l'autre.

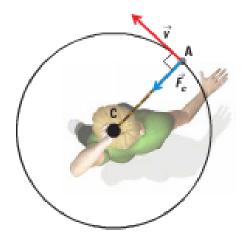
On a toujours que $\mu_s > \mu_c$

N. B.: Le frottement ne dépend pas de l'aire de surfaces en contact.

Formules permettant de calculer les forces de frottement :

$$\begin{split} F_{f|\text{statique}\}} &\leq \mu_x F_N \\ F_{f|\text{cinétique}\}} &= \mu_c F_N \\ \text{où } F_f &= \text{Force de frottement, exprimée en newtons (N)} \\ F_N &= \text{Force normale, exprimée en newtons (N)} \\ \mu_s &= \text{Coefficient de frottement statique} \\ \mu_c &= \text{Coefficient de frottement cinétique} \end{split}$$

Tableau 1 Le coefficient de frottement de différentes substances.


Substance en contact	Coefficient de frottement statique (µ _s)	Coefficient de frottement cinétique (p _c)
Cuivre sur cuivre	1,6	1,0
Acier sur acier sec	0,41	0,38
Acier sur acier graissé	0,15	0,09
Chêne sec sur chêne sec	0,5	0,3
Caoutchouc sur asphalte sec	1,2	0,8
Caoutchouc sur asphalte mouillé	0,6	0,5
Caoutchouc sur béton sec	1,0	0,7
Caoutchouc sur béton mouillé	0,7	0,5
Caoutchouc sur glace	0,006	0,005

Exemple F : Quelle est la force de frottement qui s'exerce lorsqu'une voiture de 1 500 kg dérape sur une route en asphalte mouillée ?

La tension (F_T) est la force de traction (force qui agit en tirant un corps) qu'un câble (ou tout objet long et mince) exerce sur un corps.

Exemple G : On soulève une masse de 750 g à l'aide d'un câble suspendu à une poulie. Quelle est la tension dans le câble ?

La force centripète (F_c) maintient un corps dans un mouvement circulaire.

Formule permettant de calculer la force centripète :

$$F_c = \frac{mv^2}{r}$$

où m = Masse, exprimée en kilogrammes (kg)

v = Vitesse, exprimée en mètres par seconde (m/s)

r = Rayon de la trajectoire, exprimé en mètres (m)

Exemple H : Un père fait tourner sa fille autour de lui en la tenant par les mains. Le centre de gravité de la fillette de 35,0 kg se trouve à 1,15 m du corps du père. À quelle vitesse la fillette tourne-t-elle si le père exerce une tension de 700 N ?