
Nom	: Lorra al		Groupe:
Date:			F
	EXERCICES Les for		
	Quelle est la force gravitationnelle s'e de 7,00 kg et une quille de 1,6 kg si el $Fg=?$ $F_g=?$ $F_g=G_{m_1m_2}$ $F_g=f_{g=6,67\times10}$ $F_g=6,67\times10$	lles sont distantes de 18	m?
2.	75 kg? $f_g=?$ $f_g=mg$ $m=75 Kg$ $f_g=75 Kg \times$ $f_g=735 W$	980V/kg vers le bi	ae numam de
FW Fg	to the second formula exerced pa	n une izoie qui supporte ng 13:0Kg x 9.80V/kg	une caisse de
4. .	est la tension dans le cable?	e d'un câble suspendu à = vng = 0,750kg × 9,801 = 735N	
n Y V	700 = 1.15 m $700 = 1.15 m$ $700 = 1.15 = 35.0$	we a 1,15 m du corps du je exerce une tension de 7 $= \frac{m \sqrt{2}}{35 \sqrt{0} \times \sqrt{2}}$ $= \frac{115 m}{\sqrt{2}}$	père. À quelle 100 N? V= 23,0 V= 4,80m/5
6. M	Un objet de 100 kg glisse vers le bas d' force de frottement pour qu'il descende	e à vitesse constante?	
E	$F_{g} = mg$ $F_{g} = 100 \times q$ $F_{g} = 980 N$ $F_{g} = 7$	$ \begin{array}{ll} Sin\theta = F_{f} \\ F_{g} \\ F_{f} = F_{g} \sin \theta \end{array} $ $ F_{f} = 980 \times 10^{-6} \times 10^{-6$. 6

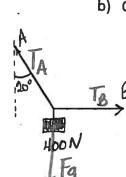
		Nom:	_orri	ale.						
		Date:	,	5				_ Groupe:	-	
		-	5		PHY	- 'SIQUE				
					Exercices	2: Les forces				
	1.	Le schéma ci	-contre monti	re line mann						
		tension supp	ortée par les	pattes du ch	e soutenue pa evalet ei la pa	outre exerce und	Calculez la			_
20		l'horizontale	00 N sur le po	oint de conta	ct. Les pattes	outre exerce une font un angle de	e poussée			
55		Familiare	de trans	lation	•	5in45=5	avec	27	\rightarrow	
		学学		Nanon ▶	1	ברוווכ -	7011		NI	
		11+12	+Fg = 0	N To	3/12/15	"元"和		FgY	12	
		T_{i+1}	$\bar{2} = -F_c$	72/	V.7	1- 40	ITIN A	45°	45°	K
		Fa = 1	lana!		皇	. 11-1		1		m
		1 ~		Fg 1	19 Rép	ITI= 1721=	71N 3			
	2.	Le schéma ci-c	ontre montre	2			3			
	1	charge de 100	kg par l'enti	remise d'un	câble faisant	gligeable souten un angle de 3	ant une		T=?	
		charge?	Zuelle est la gr	andeur de la	tension dans	un angle de 3 le cable qui sou	O avec		/= '	
	E	TI F+	户 + 子= i	DN =	F+15=		1. 2		-	
		7	9	300	9	19-1	ookgx98		30°	>
		7.	F	7	(-)	5-9	NOS		Fa	$\overline{\Psi}$
_	3.	VI	g	5 L	30/31	sin30 - 981	<u>01</u> ₩;	~	m = 100 kg	
	-,	hacune un an	z au plafond t	in objet de 5	,0 kg a l'aide	de deux cordes	17-19	POM,		4.8.25
		res cornes		rnorizontal	Licuitz 18	lelision dans d	1201170	30°	300	*
4	E /;	1, +12+F	=0N	5	tg tg	= 5.0 Kg xq	3N/2	T	1	-
	Tit	T2 = - F	I.	2	13	= 49N	"3	"I T	12	•
		TY	7	T	T2 .	sin 30°= 4	24,5N		m = 5.0 k	
	4. N	Marie tire un tr	9	1.	E 7	= 1101	2	· 7		
	d	e 40° avec l'ho	rizontale. Om	plan horizon	tal en appliqu	iant une force de	(240 N 2 12	= 1721=49N	9	*)
	P	YO° F	F+E =	T est la for	ce efficace re	sponsable du m	ouvement ho	= T2 = 44 N le d'une corde fa rizontal du tran	aisant un :	14
7-*		· · e	17-71-	240N	<u> </u>	Fe= 1	BAN	- Hell un trail	leau?	
	5. n	Pliv Daman	24.0		LOS 40 = FE	•		2000		
	ci	-contre. La per	Soulèvent un			oN in cable tel qu'il	llustré 🕽			
	Q1	roite tire à 60°			de l'horizon	iale alors que ce	ille de		A	
	a) b)	Laquelle des	delly percon-					30°	60°	
	F.=	100Kgx 9,81		s si l'objet à	soulever a un	ande force? le masse de 100	kg.	T	1-	
	9	, K	<u>.</u>	76	TH TA 200	Cos 60=T,	COS 30= T.	. "	1/2	
۲	g=9	RON		THE	30			m = 100 kg		
E	et;	T+T2+F	g=0"N	1.30(30)	1.60	Ti= 490N	T=0.15	. /	1, Fa	•
			-	600		1 -2 1 3	2-8 491	V .	V	

b) Ce système est-il en équilibre de translation? Explique.

Non, Car FR + ON

- 7. Un livre est soutenu par la main d'une personne. Deux forces sont présentes. L'une est le poids du livre qui pousse sur la main vers le bas et l'autre, dirigée vers le haut, est la force exercée par la main sur le livre.
 - a) Représente ces deux forces à l'aide de vecteurs.

Train
$$f_g = -F_{main}$$


b) Calcule la force résultante.

8. Quelle force est nécessaire pour allonger de 20 cm un ressort dont la constante de Rappel est de 60 N/m?

|
$$K = 60N/m$$
 | $F = 60N \times 0.2m$ | $F = 20cm \div 100 = 0.2m$ | $F = 12N$

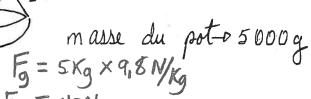
9. Une balance servant à mesurer la masse des poissons est munie d'un ressort dont la constante de rappel est de 600 N/m. Quelle est la masse d'un poisson qui déforme le ressort de 7,5 cm?

ressort de 7,5 cm?
$$F = Kl$$
 $F_g = mg$
 $K = 600N/m$ $F = 600N \times 0.075m$ $45N = m \times 9.8 K$
 $L = 7.5 cm \div 100 = 0.075m$ $F = 45N$ $m = 4.59 kg$
 $F = 7.5 cm \div 100 = 0.075m$ $m = 4.59 kg$

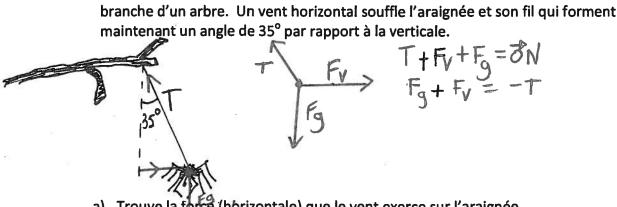
10. Deux élèves soutiennent un objet lourd en tenant les extrémités d'une corde. Le poids de l'objet est de 400 N. L'angle formé par rapport à la verticale est de 20°. a) . Quelle force l'élève A doit-il appliquer?

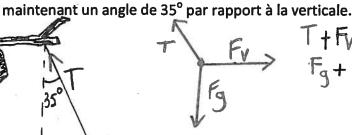
E.T.

$$T_{A}+T_{B}+F_{g}=ON$$
 $T_{B}+F_{g}=-T_{A}$


- 11. Les deux élèves du numéro précédent s'éloignent l'un de l'autre de telle sorte que l'angle par rapport à la verticale est maintenant de 50°.
 - a) À combien s'élève maintenant la force que doit appliquer l'élève?

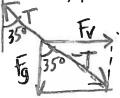
b) L'élève B?


- 12. Quel est le poids des masses suivantes à la surface de la Terre? a) 75 kg +35 N b) 454 g 4, 45 N c) 12 mg
- 13. L'accélération gravitationnelle sur la Lune étant de 1,6 N/Kg alors quel est le poids des masses du numéro précédent?
 - a) 75 kg 120N b) 454 g 0, 73 N c) 12 mg 1,92×10 -5 N
- 14. Calcule les tensions T₁ et T₂

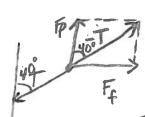


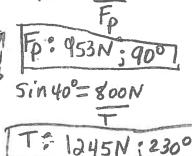
$$T_1+T_2=-F_g$$

$$\sin 40^\circ = 24.5N$$
; $T_2 = 38N$
 $T_2 = |T_1| = |T_2| = 38N$

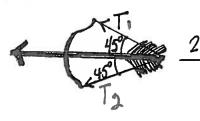


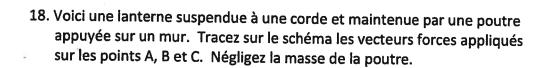
15. Une petite araignée dont le poids est de 6,0 x 10⁻³ N est suspendue par son fil à la

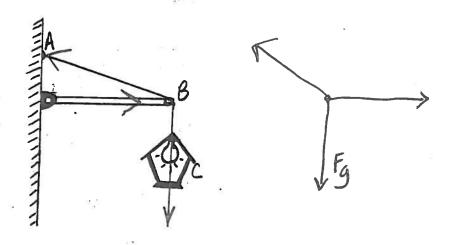

$$\begin{array}{c}
F_{V} \rightarrow F_{g} + F_{V} = -T \\
F_{g}
\end{array}$$


a) Trouve la force (horizontale) que le vent exerce sur l'araignée.

Tan
$$35^\circ = \frac{F_V}{6.0 \times 10^{-3} N}$$
; $F_V = \frac{4.2 \times 10^{-3} N}{6.0 \times 10^{-3} N}$;


- COS 350= 6,0×10-3N; T= 7,3×10 N; 250 b) Détermine la tension du fil.
- Un filet de tennis est maintenu aux extrémités par un poteau d'acier, comme on le voit sur le dessin. La tension maximale dans le filet est de 800 N et l'angle qu'il forme par rapport à la verticale est de 40°.
 - a) Trouve la force que le poteau exerce, vers le haut, sur le câble.




b) Trouve la tension du câble fixé au sol. FON THEFFON

17. Pour lancer une flèche, on tend un arc avec une force de 280 N. La flèche forme un angle de 45° de part et d'autre de la corde. Trouve la tension de la corde.

$$T_1 + T_2 + F_c = \vec{O}N$$

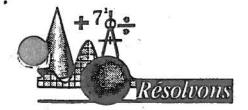
 $T_1 + T_2 = -F_c$

19. Une personne de 50 Kg est couchée dans un hamac suspendu entre deux arbres. Quelle est la grandeur de la tension exercée sur les attaches si celles-ci font un angle de 30° avec l'horizontale?

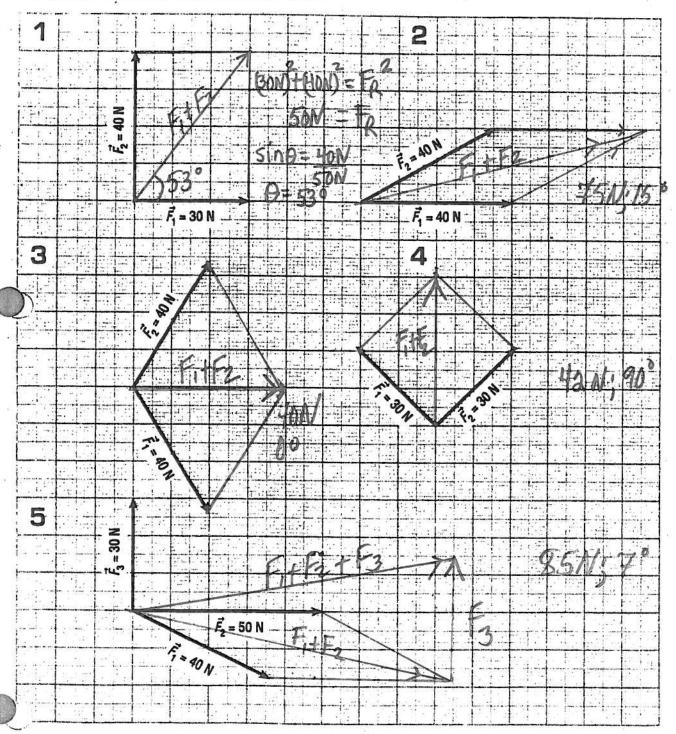
20. Calculez la constante de rappel des ressorts suivants.

F= Kl; K= = 15N = 5N/cm

 $K = \frac{F}{I} = \frac{60N}{-1cm} = -60N \epsilon_m$

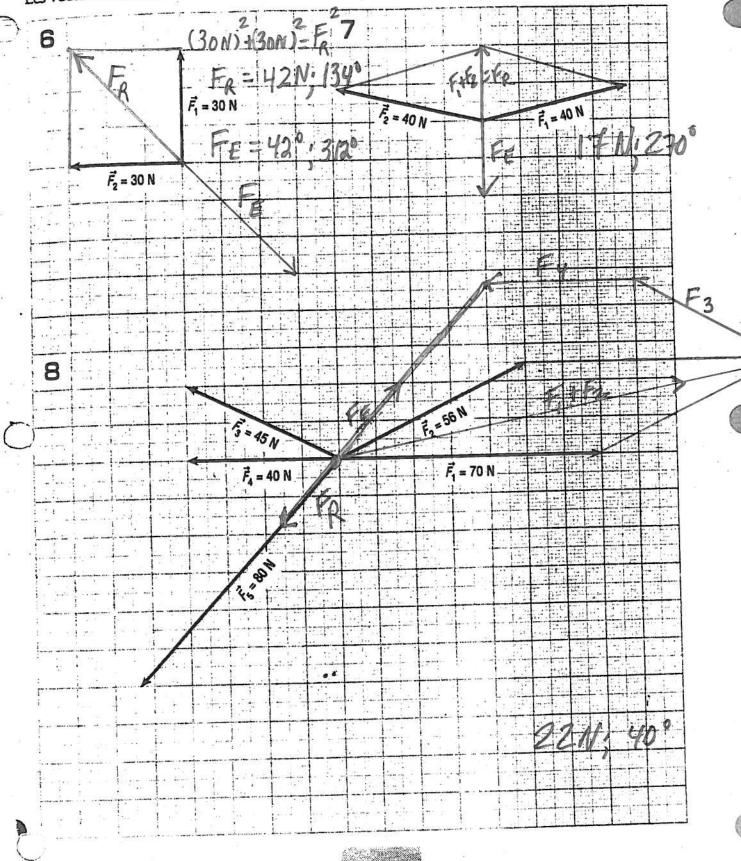

c) Ressort compressé
$$K = F = 8.0 \text{ Kg} \times 9.8 \text{ N/kg} = -7.84 \text{ N/km}$$

$$= 8.0 \text{ Kg} \times 9.8 \text{ N/kg} = -7.84 \text{ N/km}$$


$$= 30 \text{ cm}$$

21. Vous appliquez une force de 150 N à un ressort dont la constante de rappel est de 400 N/m. Quelle variation de longueur le ressort subira-t-il?

$$F = 150N$$
 $F = Kl$
 $K = 400N/m$ $l = F$
 k
 $l = 150N$
 $400N/m$
 $l = 0.375 m$



Déterminez la valeur (grandeur et orientation) de la résultante des systèmes de forces suivants. Les vecteurs sont tracés à l'échelle $1~\rm cm=10~N$

Nom: Groupe:	
--------------	--

Tracez le vecteur de l'équilibrante de chacun des systèmes de forces suivants. Les vecteurs sont tracés à l'échelle 1 cm = 10 N

Date:

Nom:

Groupe: